Uniform Structures and Berkovich Spaces
نویسنده
چکیده
A uniform space is a topological space together with some additional structure which allows one to make sense of uniform properties such as completeness or uniform convergence. Motivated by previous work of J. Rivera-Letelier, we give a new construction of the Berkovich analytic space associated to an affinoid algebra as the completion of a canonical uniform structure on the associated rigid-analytic space.
منابع مشابه
A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملPeriod Spaces for Hodge Structures in Equal Characteristic
We develop the analogue in equal positive characteristic of Fontaine’s theory for crystalline Galois representations of a p-adic field. In particular we describe the analogue of Fontaine’s mysterious functor which assigns to a crystalline Galois representation a Hodge filtration. In equal characteristic the role of the Hodge filtrations is played by Hodge-Pink structures. The later were invente...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملBerkovich Spaces Embed in Euclidean Spaces
Let K be a eld that is complete with respect to a nonarchimedean absolute value such that K has a countable dense subset. We prove that the Berkovich analyti cation V an of any d-dimensional quasi-projective scheme V over K embeds in R. If, moreover, the value group of K is dense in R>0 and V is a curve, then we describe the homeomorphism type of V an by using the theory of local dendrites.
متن کاملRelationships between completeness of fuzzy quasi-uniform spaces
In this paper, we give a kind of Cauchy 1-completeness in probabilistic quasi-uniform spaces by using 1-filters. Utilizingthe relationships among probabilistic quasi-uniformities, classical quasi-uniformities and Hutton [0, 1]-quasi-uniformities,we show the relationships between their completeness. In fuzzy quasi-metric spaces, we establish the relationshipsbetween the completeness of induced p...
متن کامل